
A  SMART  VISION  SYSTEM-ON-A-CHIP  DESIGN  BASED  ON  PROGRAMMABLE  NEURAL 
PROCESSOR  INTEGRATED  WITH  ACTIVE  PIXEL  SENSOR 

Wai-Chi Fang 

Jet Propulsion Laboratow, California Institute of Technology 
4800 Oak Grove Drive, Pasadena, CA 91109-8099, USA 

Abstract 

A low power smart vision  system  based on a large 
format (currently 1KxlK) active pixel sensor (APS) 
integrated  with a programmable neural processor for 
fast vision applications is presented. The concept of 
building a low power smart vision  system  is 
demonstrated  by a system design, which  is composed 
with an APS sensor, a smart image  window handler, 
and a neural processor. The paper also shows  that it 
is  feasible to put the whole smart vision  system  into a 
single MCM chip in a standard CMOS technology. 

This smart  vision  system  on-a-chip  can take the 
combined advantages of the optics and electronics to 
achieve ultra-high-speed smart sensory information 
processing  and analysis at the focal plane . The 
proposed  system  will enable many applications 
including robotics and machine vision, guidance and 
navigation, automotive applications, and  consumer 
electronics. Future applications will  also  include 
scientific sensors such as those suitable for  highly 
integrated  imaging  systems used in NASA deep space 
and  planetary spacecraft. 

1. Low Power  Smart  Machine Vision System 

Figure 1 shows a system diagram of the proposed 
smart  vision system. The functional blocks  include: 
(a) an active pixel sensor, (b) a smart image  window 
handler, (c) a programmable neural processor, and (d) 
a host  interface  and timing control card. The APS is 
used as the optical sensing array in the system. The 
smart  window handler manipulates the APS image 
data and provides the windowed  image for the neural 
processor. The neural processor is programmed to 
perform  various  vision tasks in high  speed due to its 
massively parallel computing structures and learning 
capabilities. The host computer through host  interface 
and  timing control card controls the APS sensor, the 
smart  image  window handler, and  the  programmable 
neural processor. The output image or vision science 
data will  be displayed by the host computer. 

It  is  feasible to build the proposed smart  vision 
system in a single CMOS chip. This smart  vision 
system  on-a-chip can take the combined  advantages 
of the optics and electronics to achieve low-power 
high-speed  smart sensory hformation processing  and 
analysis at the focal plane. Tbe proposed system  will 
enable many applications including robotics and 
machine  vision, guidance and navigation, automotive 
applications, and  consumer electronics. Future 
applications will also include scientific sensors  such 
as those suitable for  highly integrated imaging 
systems  used in NASA deep space and  planetary 
spacecraft. 

The  following sections describe technical details 
of each building block of the proposed smart  vision 
system  and  also  show the feasibility to put  the  whole 
system  into a single chip in a standard low  power 
CMOS  technology. 

2. CMOS  Active  Pixel  Sensor 

A low power  CMOS APS camera-on-a-chip  has 
been developed for producing imaging  systems  that 
can  be  manufactured  with  low cost, low  power,  and 
with excellent imaging quality [ 11. 

competing  technology  for  image sensors. However, 
CCDs cannot be  easily integrated with  CMOS 
without additional fabrication complexity. In 
addition, CCDs  require  two-order-of-magnitude 
higher  power dissipation than that of APS. The  CCD 
does not  have  the  windowing capability to provide 
the  input data to the neural processor. On the  other 
hand,  an APS imager does not have  the above 
limitations  and  it  is the suitable candidate for  the 
proposed smart vision system. 

The lKxlK APS is used as the optical sensing 
array  and  integrated  with the neural  processor to build 
the  smart  vision  system for high definition vision 
applications. A low power lKxlK CMOS APS 
(operate from a +3.3 V supply) using 0.55 Om n-well 
process was designed and characterized at JPL. 
Testing results show that the large  format APS with 
small feature size (10 micron  pixel pitch) is  capable 
of excellent imaging performance. 

Charge-coupled devices (CCDs)  are  currently  the 
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A block diagram of the lKxlK APS chip 
architecture  and  its chip photo are shown  in  Figure 2. 
It  contains  a 1024x 1024 photodiode or photogate 
pixel  array  and 1024 parallel 1 O-bit singles-slope 
ADC.  The  10-bit decoders are controlled by  input 
clocks to supply the row address and  column address 
for  analog or digital mode operation of the chip. The 
analog outputs are VS-OUT (signal) and VR-OUT 
(reset), and the digital outputs are D-out0 to D-out9. 
The analog and digital readout chains are separated 
by the  pixel array. Each  imager  can  be operated in 
analog or digital readout mode.. 

Host Computer 

Host Interface and Timing Control Card 

APS Chip Window 
Programmable 

Neural Processor 

I J 

Fig. 1. A system diagram of the smart vision  system. 

Fig. 2. Block diagram and chip layout of IKxlK 
CMOS APS . 

3. Smart  Image  Window  Handler 

The APS images described in the previous 
section are capable of providing mxm sub-window 
image data to neural processor. However, the neural 
processor requires the input data in the format of mxm 
sub-window  which shift in x rows and  y  columns 
basis through the whole  image,  where x and  y are 
integer  ranged fiom 0 to n-1. Thus, (n-m+l)x(n-m+l) 

sub-windows  per  frame are required for  a nxn APS 
with  a  window  shifting  in 1 row  and 1 column basis. 
In  this case, the fiame time of the APS chip as well as 
the  system  will  be  much  longer  than  the fi-ame time 
that the APS chip is running in the row by  row  output 
mode. The smart image  window handler can solve 
this difficulty. The smart image  window  handler  is 
designed  for the interface between  the APS chip  and 
neural  processor to achieve a  fast  frame  time. 

4. Programmable  Neural  processor 

A programmable neural processor based  on 
optimization cellular neural network  (OCNN)  has 
been  used as a  front-end sensory information 
processor to provide high  throughput  real-time 
computing  power at neighborhood of the APS 
sensory circuit. The  OCNN neural processor is 
programmable to perform various  vision  functions at 
very  high speed in VLSI. Moreover, the OCNN 
architecture is a  locally connected, massively 
paralleled  computing  system  with simple synaptic 
operators so that it is  very suitable for VLSI 
implementation. A compact VLSI  OCNN  neural 
processor is able to provide a  powerful  computing 
engine for the  smart  vision  system.  Both  high data 
bandwidth  and  high performance computation  are 
required  for  various  vision functions. Incorporating 
the  OCNN  neural processor into the proposed  vision 
system offers orders-of-magnitude computing 
performance  enhancements for on-board real-time 
vision tasks. 

4.1. Neuroprocessor  Architecture and Features 

The OCNN proposed for the vision  system is an 
improved  version of the original Cellular  Neural 
Networks (CNN). Since its original publication by 
Chua  and  Yang [3,4] in 1988, the  CNN  paradigm  has 
evolved  rapidly  and provides a  unified  framework  for 
many computation-intensive applications such as 
signal processing and optimization. The CNN has 
been  proved to be  universal as the Turing machine 
[5]. As shown in Figure 3, the  OCNN  is  a  multi- 
dimensional array of mainly identical cells, which  are 
dynamic  systems  with continuous state variables  and 
locally  connected  with their local cells within  a  finite 
radius.  Figure 3 also shows the model of the  OCNN 
neuron C(ij). Many  OCNN functions have  been 
verified  via  system  simulation.  These  functions 
include noise filtering, isolated pixel  elimination,  hole 
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filling, morphological operations, image 
enhancement,  edge detection, connected component 
detection, feature extraction, motion detection, 
motion estimation, motion compensation, object 
counting, size estimation, path tracking, collision 
avoidance,  minimal  and  maximal detection, etc. . 
The operation for different applications depends 
primarily  on the coefficients of the templates and  the 
procedure to apply them. A template includes the 
information for synapse  weights, threshold values, 
and  boundary conditions. 

The OCNN  design  is targeted for smart vision 
system,  it has four  more significant features than  the 
basic  CNN: 

(A) Optimal  Solutions of Energy  Function: 
Under  the  mild condition [3], a CNN  autonomously 
finds a stable solution for  which the Lyapunov 
function of the  network  is  locally minimized. To 
improve  the local minimized  energy function of the 
basic  CNN,  the annealing capability is included to 
accommodate the applications in  which the optimal 
solutions of energy function are needed. Hardware 
annealing [6] is a highly efficient method of finding 
optimal solutions for cellular neural networks. 
(B) Multiple  Layers with Embedded  Maximum 
Evolution  Functions: 
In  the original CNN  every  pixel  is represented by  one 
neuron. In  the  OCNN every pixel can be represented 
by multiple neurons which  form a hyperneuron  and 
execute  the  maximum evolution function for various 
profile selections or the  multi-sensor data synergy. 
(C) Digitally  Programmable  Synapse  Weights: 

To improve the fixed synapse  weights of the  basic 
CNN,  the digitally programmable synapse  weights are 
designed for the OCNN to accommodate the 
applications, which require programmable  pre- 
determined operators. 
(0) High-speed  Parallel  External  Image I/O: 
To improve the data I/O bandwidth of the  basic CNN, 
an  APS  sensor is integrated with the OCNN to 
accommodate the applications, which require high- 
speed parallel image 110. 

The OCNN can  be  used as a fiont-end 
sensory  information processor with the APS to 
provide high throughput real-time computing power 
at neighborhood of the sensory circuit. The OCNN 
operation theory, architecture, design  and 
implementation, prototype chip, and  system 
applications have  been investigated in detail and 
presented in the references [2,8]. 

Fig. 3 OCCN  Array  and Processor Element  Design. 

An  OCNN  unit consists of a core neuron cell, 
synaptic  weights, input/output circuits, and  digital 
interface. To construct a complete OCNN, a multiple 
of the units  can  be arranged in an n-by-m  rectangular 
grid  with appropriate interconnections. Building 
blocks of the OCNN are briefly described in the 
following: 

Programmable  synapses: The digital programmable 
synapse  is  realized  using a binary-weighted  current 
source array. Programmability of -3.75 to 3.75  for 
each synaptic weight  is provided. This synaptic 
weight  function  can achieve 5-bit  programmability 
and a resolution of higher  than 8 bits. 

Transimpedance  multiplier: The hardware 
annealing  is  performed  by the pre-multiplication  of 
the state vxg by  the  gain control function g before  the 
nonlinear  function f(x) takes place. The basic  element 
of the proposed circuit is the double-MOS  differential 
resistor operating in triode region 

Summing  circuit: If the summation of the  weighted 
currents from  the neighboring cells is carried out 
directly in the transimpedance multiplier,  the  value  of 
resistance Rx is  inversely proportional to the  gain- 
control voltage V,. In order to accommodate a 
constant Rx, the  constant  input  impedance  current 
inverter is used  at  the input stage of the  multiplier. 

Nonlinear  function: The circuit for the nonlinear 
function y = f(x) is  accomplished  by a simple 
transconductor consisting of a differential amplifier. 
Its large  signal  transfer f ic t ion is a smooth,  sigmoid- 
like characteristic. A weak  positive  feedback is 
applied to increase the transconductance value 
without  increasing the (WL)  ratio of the  differential- 
pair transistors. 

4.2. Current-Mode VLSI OCNN  Neural  Chip: 
Prototyping  and  Demonstration 

To illustrate  the  implementation  feasibility, a 
programmable  5x5 cellular neural processing chip 
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was  designed, fabricated and tested in a scalable 
CMOS  technology through MOSIS Services. 

A circuit board  was  built to demonstrate the operation 
of this prototype chip. Experiments on edge detection 
were  performed. The measured result agrees well 
with the C-based simulation result. The CPU time  for 
the C-based simulation is 2.53 seconds. The speedup 
is about 160,000. 

A OCNN chip of 128 x 128 annealed  neurons 
has been  under development and can  be realized in a 
1.5 cm x 1.5 cm chip. A network of 1024 x 1024 
annealed neurons is feasible to be designed with 64 
128x128 OCNN chips and packaged into a 3-D die 
stack. 

5 Smart Vision  System-On-A-Chip Design 

An low-power 1024x1024-pixel APS 
integrated  with a 1024x1 024 neural processor 
through a smart window handler has been  under 
development by using a 3-D VLSI die stacking 
technology combined with a sub-0.5-micron low 
power SO1 CMOS process technology. A 3-D  VLSI 
stack of dimensions 3 cm x 3 cm x 0.5 cm  is 
projected to accommodate a complete 1024x1 024- 
array neural. Figure 4 illustrated that a 5cmxlOcm 
MCM  is  used to implement the smart vision  system 
into a single packaged SOAC chip. 

The neural processor operation speed is  up 
to 4 MHz. The neural processor provides 4 tera- 
operations per second. The power dissipation of the 
smart  vision  MCM  is about 1 W at 4 MHz nominal 
operation. Its  volume is less than 100  cm3  and  its 
mass  is  about 200 gm. A miniaturized highly 
integrated  vision  system  is therefore feasible to be 
implemented  into a compact MCM at a manageable 
power dissipation rate. 

Fig. 4. A Smart Vision MCM Design. 

6. Conclusion 

Demonstration of the concept of the  smart  vision 
system  based  on  APS integrated with  programmable 
neural processor gives the feasibility of design  the 
proposed system  on a chip. This  highly  integrated 
and  ultra-high-speed  information processing smart 
vision  system  on-a-chip can be  used  on  various 
NASA scientific missions  and  other  industrial  or 
commercial  vision applications. 
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